The Fusion of Individual Tree Detection and Visual Interpretation in Assesment of Forest Variables from Laser Point Clouds
نویسندگان
چکیده
In this study we searched the obtainable accuracy of forest inventory based on the individual tree detection (ITD) by using fusion of automatic ITD (ITDauto) and visual interpretation of laser point clouds. Current ITD algorithms, mostly based on segmentation of canopy height models (CHMs), are not able to utilize the whole information included in three-dimensional point clouds. We hypothesized that visual interpretation of the point cloud could provide so-called “best case” tree detection that could be achievable automatically. We refer to this method consisting of ITDauto and visual interpretation as ITDvisual. We assessed the plot level accuracies of the ITDauto and ITDvisual in boreal managed forest conditions using 322 plots. Based on the results the accuracy of ITD can be improved with visual interpretation. Omission trees are mainly missing from both ITD-methods. ITDvisual produced more accurate estimates for all forest variables compared to ITDauto, e.g. RMSE% in volume decreased from 33.3% to 27.8% and bias% in volume from 4.1% to 2.3%. Area-based approach (ABA) is becoming more general for operational forest inventories with sparser laser data. ITDvisual would be justified if it could replace expensive field work in plot-wise measurements needed for ABA. Further research is needed in the use of ITD results as a reference for ABA. * Corresponding author.
منابع مشابه
Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کامل3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کاملA novel method for locating the local terrestrial laser scans in a global aerial point cloud
In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...
متن کاملVHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine
Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...
متن کاملAdvances in Forest Inventory Using Airborne Laser Scanning
We present two improvements for laser-based forest inventory. The first improvement is based on using last pulse data for tree detection. When trees overlap, the surface model between the trees corresponding to the first pulse stays high, whereas the corresponding model from the last pulse results in a drop in elevation, due to its better penetration between the trees. This drop in elevation ca...
متن کامل